Math-Js

Math in JavaScript


Polynomial.js

WIP

Scroll UP | TOP

Fraction.js

Scroll UP | TOP

Matrix.js

WIP

Scroll UP | TOP

Vector.js

WIP

Scroll UP | TOP

ComplexNumber.js

WIP

the class and its prototype are immutable!

Scroll UP | TOP

BigIntType.js

WIP

arbitrary precision integer using JS’s Uint8Array (unsigned 8-bit integer array) human “readable” code with lots of documentation (js-doc & some comments) and descriptive error throws

BigIntType online calculator WIP

Supported numerical bases > ALL YOUR BASE ARE BELONG TO US - all bases from 2 to 4'294'967'296 (inclusive) are supported for in- and output - via `String`, `Number`, `BigInt`, `Uint8Array`, or array of `Number`s - base 1 is only supported for input - supported prefixes - `0b` for base 2 (binary) - `0o` for base 8 (octal) - `0x` for base 16 (hexadecimal) - used characters (as digits in a string) - up to base 36 (including), `0-9` and `A-Z` are used as needed - above 36 only via CSV (comma-separated-values or numbers in this case), where each number corresponds to the numerical value of the digit at that place (in base 10 / with `0-9`) - `"braille"` is in base 256 but uses braille patterns (`U+2800` to `U+28FF` inclusive) as digit-charset
Supported numerical base names > [Wikipedia: Numerical Bases](https://en.wikipedia.org/wiki/List_of_numeral_systems#Standard_positional_numeral_systems) | base | names | base | names | | ----:| ---------------------------------------------------- | ----------:| ---------------------------------------------- | | 2 | `b` / `bin` / `bits` / `binary` / `1bit` | 72 | `duoseptuagesimal` | | 3 | `ternary` / `trinary` | 80 | `octogesimal` | | 4 | `q` / `quaternary` / `2bit` | 81 | `unoctogesimal` | | 5 | `quinary` / `pental` | 85 | `pentoctogesimal` | | 6 | `senary` / `heximal` / `seximal` | 89 | `enneaoctogesimal` | | 7 | `septenary` | 90 | `nonagesimal` | | 8 | `o` / `oct` / `octal` / `3bit` | 91 | `unnonagesimal` | | 9 | `nonary` | 92 | `duononagesimal` | | 10 | `d` / `dec` / `decimal` / `denary` | 93 | `trinonagesimal` | | 11 | `undecimal` | 94 | `tetranonagesimal` | | 12 | `duodecimal` / `dozenal` / `uncial` | 95 | `pentanonagesimal` | | 13 | `tridecimal` | 96 | `hexanonagesimal` | | 14 | `tetradecimal` | 97 | `septanonagesimal` | | 15 | `pentadecimal` | 100 | `centesimal` | | 16 | `h` / `hex` / `hexadecimal` / `sexadecimal` / `4bit` | 120 | `centevigesimal` | | 17 | `heptadecimal` | 121 | `centeunvigesimal` | | 18 | `octodecimal` | 125 | `centepentavigesimal` | | 19 | `enneadecimal` | 128 | `centeoctovigesimal` / `7bit` | | 20 | `vigesimal` | 144 | `centetetraquadragesimal` | | 21 | `unvigesimal` | 169 | `centenovemsexagesimal` | | 22 | `duovigesimal` | 185 | `centepentoctogesimal` | | 23 | `trivigesimal` | 196 | `centehexanonagesimal` | | 24 | `tetravigesimal` | 200 | `duocentesimal` | | 25 | `pentavigesimal` | 210 | `duocentedecimal` | | 26 | `hexavigesimal` | 216 | `duocentehexidecimal` | | 27 | `heptavigesimal` / `septemvigesimal` | 225 | `duocentepentavigesimal` | | 28 | `octovigesimal` | 256 | `duocentehexaquinquagesimal` / `byte` / `8bit` | | 29 | `enneavigesimal` | 300 | `trecentesimal` | | 30 | `trigesimal` | 360 | `trecentosexagesimal` | | 31 | `untrigesimal` | 512 | `9bit` | | 32 | `duotrigesimal` / `5bit` | 1024 | `10bit` | | 33 | `tritrigesimal` | 2048 | `11bit` | | 34 | `tetratrigesimal` | 4096 | `12bit` | | 35 | `pentatrigesimal` | 8192 | `13bit` | | 36 | `t` / `txt` / `text` / `hexatrigesimal` | 16384 | `14bit` | | 37 | `heptatrigesimal` | 32768 | `15bit` | | 38 | `octotrigesimal` | 65536 | `16bit` | | 39 | `enneatrigesimal` | 131072 | `17bit` | | 40 | `quadragesimal` | 262144 | `18bit` | | 42 | `duoquadragesimal` | 524288 | `19bit` | | 45 | `pentaquadragesimal` | 1048576 | `20bit` | | 47 | `septaquadragesimal` | 2097152 | `21bit` | | 48 | `octoquadragesimal` | 4194304 | `22bit` | | 49 | `enneaquadragesimal` | 8388608 | `23bit` | | 50 | `quinquagesimal` | 16777216 | `24bit` | | 52 | `duoquinquagesimal` | 33554432 | `25bit` | | 54 | `tetraquinquagesimal` | 67108864 | `26bit` | | 56 | `hexaquinquagesimal` | 134217728 | `27bit` | | 57 | `heptaquinquagesimal` | 268435456 | `28bit` | | 58 | `octoquinquagesimal` | 536870912 | `29bit` | | 60 | `sexagesimal` / `sexagenary` | 1073741824 | `30bit` | | 62 | `duosexagesimal` | 2147483648 | `31bit` | | 64 | `tetrasexagesimal` / `6bit` | 4294967296 | `32bit` |
Supported rounding types > [![Wikipedia: Rounding (interactible graph)](https://upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Comparison_rounding_graphs_SMIL.svg/300px-Comparison_rounding_graphs_SMIL.svg.png "Wikipedia: Rounding (interactible graph)")](https://en.wikipedia.org/wiki/Rounding) | name | description | example | | ----------- | ------------------------------------------- |:---------------------------------------------------:| | `NEAR_DOWN` | round to nearest integer, towards -infinity | +1.5 → +1
+2.5 → +2
−2.5 → −3 | | `NEAR_UP` | round to nearest integer, towards +infinity | +1.5 → +2
+2.5 → +3
−2.5 → −2 | | `NEAR_ZERO` | round to nearest integer, towards zero | +1.5 → +1
+2.5 → +2
−2.5 → −2 | | `NEAR_INF` | round to nearest integer, away from zero | +1.5 → +2
+2.5 → +3
−2.5 → −3 | | `NEAR_EVEN` | round to nearest even integer | +1.5 → +2
+2.5 → +2
−2.5 → −2 | | `NEAR_ODD` | round to nearest odd integer | +1.5 → +1
+2.5 → +3
−2.5 → −3 | | `FLOOR` | round down (towards -infinity) | +1.* → +1
+2.* → +2
−2.* → −3 | | `CEIL` | round up (towards +infinity) | +1.* → +2
+2.* → +3
−2.* → −2 | | `TRUNC` | round down (towards zero) | +1.* → +1
+2.* → +2
−2.* → −2 | | `RAISE` | round up (away from zero) | +1.* → +2
+2.* → +3
−2.* → −3 |
Supported modulo types > [Wikipedia: Modulo](https://en.wikipedia.org/wiki/Modulo) | name | description | | ----------------- | ---------------------------------------- | | `ROUND_NEAR_DOWN` | division rounded towards -infinity | | `ROUND_NEAR_UP` | division rounded towards +infinity | | `ROUND_NEAR_ZERO` | division rounded towards zero | | `ROUND_NEAR_INF` | division rounded away from zero | | `ROUND_NEAR_EVEN` | division rounded to nearest even integer | | `ROUND_NEAR_ODD` | division rounded to nearest odd integer | | `FLOOR` | floored division (towards -infinity) | | `CEIL` | ceiled division (towards +infinity) | | `TRUNC` | truncated division (towards zero) | | `RAISE` | raised division (away from zero) | | `EUCLID` | euclidean division (positive remainder) |
Modulo examples $\large3\bmod5\implies\frac35=0\frac35=0.6\qquad\text{round up}$ | | trunc | floor | euclid | round | ceil | raise | |:-------:| -----:| -----:| ------:| -----:| ----:| -----:| | +3 % +5 | +3 | +3 | +3 | −2 | −2 | −2 | | +3 % −5 | +3 | −2 | +3 | −2 | +3 | −2 | | −3 % +5 | −3 | +2 | +2 | +2 | −3 | +2 | | −3 % −5 | −3 | −3 | +2 | +2 | +2 | +2 |
$\large5\bmod3\implies\frac53=1\frac23=1.\overline6\qquad\text{round up}$ | | trunc | floor | euclid | round | ceil | raise | |:-------:| -----:| -----:| ------:| -----:| ----:| -----:| | +5 % +3 | +2 | +2 | +2 | −1 | −1 | −1 | | +5 % −3 | +2 | −1 | +2 | −1 | +2 | −1 | | −5 % +3 | −2 | +1 | +1 | +1 | −2 | +1 | | −5 % −3 | −2 | −2 | +1 | +1 | +1 | +1 |
$\large4\bmod3\implies\frac43=1\frac13=1.\overline3\qquad\text{round down}$ | | trunc | floor | euclid | round | ceil | raise | |:-------:| -----:| -----:| ------:| -----:| ----:| -----:| | +4 % +3 | +1 | +1 | +1 | +1 | −2 | −2 | | +4 % −3 | +1 | −2 | +1 | +1 | +1 | −2 | | −4 % +3 | −1 | +2 | +2 | −1 | −1 | +2 | | −4 % −3 | −1 | −1 | +2 | −1 | +2 | +2 |
$\large3\bmod2\implies\frac32=1\frac12=1.5\qquad\text{round down or up }\normalsize\text{(depending on rounding type)}$ | | trunc | floor | euclid | round | ceil | raise | |:-------:| -----:| -----:| ------:|:------------------------------------------:| ----:| -----:| | +3 % +2 | +1 | +1 | +1 | ⌊ −1 ⌋ or ⌈ +1 ⌉ | −1 | −1 | | +3 % −2 | +1 | −1 | +1 | ⌊ −1 ⌋ or ⌈ +1 ⌉ | +1 | −1 | | −3 % +2 | −1 | +1 | +1 | ⌊ +1 ⌋ or ⌈ −1 ⌉ | −1 | +1 | | −3 % −2 | −1 | −1 | +1 | ⌊ +1 ⌋ or ⌈ −1 ⌉ | +1 | +1 |
$\large3\bmod3\implies\frac33=1\frac03=1.0\qquad\text{round 0 }\normalsize\text{(same as rounding down)}$ | | trunc | floor | euclid | round | ceil | raise | |:-------:| -----:| -----:| ------:| -----:| ----:| -----:| | +3 % +3 | +0 | +0 | +0 | +0 | −0 | −0 | | +3 % −3 | +0 | −0 | +0 | +0 | +0 | −0 | | −3 % +3 | −0 | +0 | +0 | −0 | −0 | +0 | | −3 % −3 | −0 | −0 | +0 | −0 | +0 | +0 |

more details/documentation in the file itself via js-docs (/** */) and additional commenting with //~

Scroll UP | TOP

BigIntFractionComplex.js

WIP

idea: BigInt » Fraction & Infinity » ComplexNumber

Scroll UP | TOP

RNG.js

RNG stuff

WIP

Static methods for RNG.noise(x, seed) (non-cryptographic 32bit hash) and RNG.valueNoise2D(x, y, seed).

After instanciating an RNG object (sfc32) with a seed (MurmurHash3) one can get random values via:

The RNG state (from an instance) can be saved via state and later restored via RNG.from(state).

Internal but non-private methods:

The class and its prototype are immutable!

Import - import [dynamically](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import "MDN JS import() / dynamic import") ```javascript const { RNG } = await import("./RNG.js"); ``` - import in node.js ```javascript const { RNG } = require("./RNG.js"); // or in modules ↓ import { RNG } from "./RNG.js"; ``` - import in html: ```html ```

Test render with valueNoise2D: https://maz01001.github.io/Math-Js/RNG_example

Performance test > node.js `v16.13.1` on intel `i7-10700K` ```javascript new RNG();new RNG();new RNG();//! warmup const a=performance.now(); const rng=new RNG(); const b=performance.now(); rng.val32; const c=performance.now(); { const rng=new RNG(); for(let i=0;i<10000;++i)rng.val32; } const d=performance.now(); new RNG().val32; const e=performance.now(); for(let i=0;i<1000;++i){new RNG("Lorem").val32;new RNG("ipsum").val32;new RNG("dolor").val32;new RNG("sit").val32;new RNG("amet").val32;new RNG("consectetur").val32;new RNG("adipiscing").val32;new RNG("elit").val32;new RNG("Terram").val32;new RNG("mihi").val32;} const f=performance.now(); for(let i=0;i<10000;++i)new RNG(""+i).val32; const g=performance.now(); RNG.noise(0x3FA98E75); const h=performance.now(); for(let i=0;i<1000;++i){RNG.noise(0x3FA98E75);RNG.noise(0x16D9FCA5);RNG.noise(0x1C7590AF);RNG.noise(0x28C6E13D);RNG.noise(0x2CA6DF15);RNG.noise(0x4E0C719F);RNG.noise(0x5237A8B1);RNG.noise(0xD7F3E9AB);RNG.noise(0xF21D5409);RNG.noise(0xF93C5AEB);} const i=performance.now(); for(let i=0;i<10000;++i)RNG.noise(i); const j=performance.now(); for(let i=0;i<10000;++i)RNG.valueNoise2D(i,i*0xF47A23); const k=performance.now(); console.log([ ` init new RNG: ${(b-a).toFixed(4).padStart(9)} ms`,//=> 0.0150 ms ` val32: ${(c-b).toFixed(4).padStart(9)} ms`,//=> 0.0285 ms ` init + 10'000 val32: ${(d-c).toFixed(4).padStart(9)} ms`,//=> 1.8899 ms ` init val32: ${(e-d).toFixed(4).padStart(9)} ms`,//=> 0.0218 ms ` 1000 * 10 init val32: ${(f-e).toFixed(4).padStart(9)} ms`,//=> 10.0103 ms ` 10'000 init val32: ${(g-f).toFixed(4).padStart(9)} ms`,//=> 5.5522 ms ` prime noise: ${(h-g).toFixed(4).padStart(9)} ms`,//=> 0.0781 ms ` 1000 * 10 prime noise: ${(i-h).toFixed(4).padStart(9)} ms`,//=> 1.7489 ms ` 10'000 counter noise: ${(j-i).toFixed(4).padStart(9)} ms`,//=> 0.2728 ms `10'000 counter+prime valueNoise2D: ${(k-j).toFixed(4).padStart(9)} ms`,//=> 4.4087 ms ` TOTAL: ${(k-a).toFixed(4).padStart(9)} ms`,//=> 24.0262 ms ].join("\n")); ```

Scroll UP | TOP

functions.js

some useful math functions

also see other-projects/useful.js

mapRange translate the given number to another range ```typescript function mapRange(n: number, a: number, b: number, x: number, y: number, limit?: boolean | undefined): number mapRange(0.5, 0, 1, 0, 100); //=> 50 mapRange(3, 0, 1, 0, 100); //=> 300 mapRange(3, 0, 1, 0, 100, true); //=> 100 ```
toPercent calculates the percentage of the given number within the given range ```typescript function toPercent(n: number, x: number, y: number): number toPercent(150, 100, 200); //=> 0.5 = 50% ```
deg2rad converts the given angle from DEG to RAD ```typescript function deg2rad(deg: number): number ```
rad2deg converts the given angle from RAD to DEG ```typescript function rad2deg(rad: number): number ```
gcd calculates the greatest common divisor of `n` and `m` (positive safe integers `[1..2↑53[`) ```typescript function gcd(n: number, m: number): number gcd(45, 100); //=> 5 → (45/5) / (100/5) → 9/20 ```
dec2frac converts a decimal number to an improper-fraction (rough estimation) ```typescript function dec2frac(dec: number, loop_last?: number | undefined, max_den?: number | undefined, max_iter?: number | undefined): Readonly<{ a: number; b: number; c: number; i: number; r: string; }> dec2frac(0.12, 2); //=> { a:0, b:4, c:33, i:0, r:"precision" } → 0+4/33 → 0.121212121212... ```
padNum convert number to string with padding \ format: `[sign] [padded start ' '] [.] [padded end '0'] [e ~]` ```typescript function padNum(n: number | string, first?: number | undefined, last?: number | undefined): string padNum("1.23e2", 3, 5); //=> "+ 1.23000e2" ```
euclideanModulo calculates the modulo of two whole numbers (euclidean division) $$\large a-\left(\lvert b\rvert\cdot\left\lfloor\dfrac{a}{\lvert b\rvert}\right\rfloor\right)$$ ```typescript function euclideanModulo(a: number, b: number): number ```
randomRange genarates a random number within given range (inclusive) _gets a random number via `Math.random()` and assumes that this number is in range [0 to (1 - `Number.EPSILON`)] (inclusive)_ ```typescript function randomRange(min: number, max: number): number ```
randomRangeInt genarates a random integer within given range (inclusive) ```typescript function randomRangeInt(min: number, max: number): number ```
divisionWithRest division with two unsigned numbers $$\large\dfrac{A}{B}=Q+\dfrac{R}{B}$$ ```typescript function divisionWithRest(A: number, B: number): readonly [number, number] divisionWithRest(5, 3); //=> [1, 2] → 1+2/3 ``` also see [`Math-Js/BigIntType.js : #calcDivRest`](https://github.com/MAZ01001/Math-Js/blob/ca71710d50a5fa57e5cb76410cc33df8c1e688d4/BigIntType.js#L1880 "Permalink to #calcDivRest method in Math-Js/BigIntType.js") for a solution with arbitrary-length-integers
randomBools generate a set amount of random booleans \ _generator function_ ```typescript function randomBools(amount?: number | undefined): Generator<boolean, any, unknown> for(const rng of randomBools(3))console.log("%O",rng); ```
rangeGenerator creates a generator for given range - iterable \ _use `Array.from()` to create a normal `number[]` array_ ```typescript function rangeGenerator(start: number, end: number, step?: number | undefined, overflow?: boolean | undefined): Generator<number, void, unknown> for(const odd of rangeGenerator(1, 100, 2))console.log(odd); //~ 1 3 5 .. 97 99 ```
rng32bit get a function to get random numbers like Math.random but from a given seed \ _uses `MurmurHash3` for seeding and `sfc32` for generating 32bit values_ ```typescript function rng32bit(seed?: string | undefined): () => number rng32bit("seed")(); //=> 3595049765 [0 to 0xFFFFFFFF inclusive] rng32bit("seed")()/0xFFFFFFFF; //=> 0.8370377509475307 [0.0 to 1.0 inclusive] rng32bit("seed")()/0x100000000;//=> 0.8370377507526428 [0.0 inclusive to 1.0 exclusive] ```
valueNoise calculates value noise for given coordinates \ uses quintic interpolation for mixing numbers, and a quick (non-cryptographic) hash function to get random noise from coordinates \ _the output is allways the same for the same input_ ```typescript function valueNoise(x: number, y: number): number ```
Example render I used the following code to render the background on the [preview of my r/place overlay script](https://maz01001.github.io/rPlaceOverlays/preview "Open rPlaceOverlays preview page online") ```javascript const size = Object.freeze([1920, 1080]), exampleNoise = new ImageData(...size, {colorSpace: "srgb"}); for(let x = 0, y = 0; y < size[1] && x < size[0]; ++x >= size[0] ? (x = 0, y++) : 0){ const pixel = valueNoise(x * 0.008, y * 0.008) * 127 + valueNoise(x * 0.016, y * 0.016) * 63.5 + valueNoise(x * 0.032, y * 0.032) * 31.75 + valueNoise(x * 0.064, y * 0.064) * 15.875 + valueNoise(x * 0.128, y * 0.128) * 7.9375; //// + valueNoise(x * 0.256, y * 0.256) * 3.96875 //// + valueNoise(x * 0.512, y * 0.512) * 1.984375; exampleNoise.data.set([pixel, pixel, pixel, 0xFF], (y * size[0] + x) * 4); } document.body.style.backgroundImage = (() => { "use strict"; const canvas = document.createElement("canvas"); canvas.width = size[0]; canvas.height = size[1]; canvas.getContext("2d")?.putImageData(exampleNoise, 0, 0); return `url(${ canvas.toDataURL("image/png") })`; })(); ```
factorial calculates the factorial of a non-zero positive integer must be either `number` in range `[0..18]` or `bigint` ```typescript type int = number | bigint function factorial(n: int): int ``` ```javascript // number of possible shuffles of a deck of cards factorial(52n);//=> 80658175170943878571660636856403766975289505440883277824000000000000n (~ 8e+67) // highest possible with `number` type factorial(18); //=> 6402373705728000 factorial(19n);//=> 121645100408832000n ```
isPrime calculates if a given number (in safe integer range: `]-2↑53,2↑53[`) is prime ```typescript function isPrime(x: number): boolean ```
Performance test > node.js `v16.13.1` on intel `i7-10700K` ```javascript const t=[ performance.now(),isPrime(31), //=> 0.0472 ms : Prime (warmup) performance.now(),isPrime(31), //=> 0.0024 ms : Prime performance.now(),isPrime(331), //=> 0.0014 ms : Prime performance.now(),isPrime(3331), //=> 0.0013 ms : Prime performance.now(),isPrime(33331), //=> 0.0050 ms : Prime performance.now(),isPrime(333331), //=> 0.0089 ms : Prime performance.now(),isPrime(3333331), //=> 0.0089 ms : Prime performance.now(),isPrime(33333331), //=> 0.0248 ms : Prime //~ https://oeis.org/A123568 ↑ performance.now(),isPrime(6779164939), //=> 2.4889 ms : Prime performance.now(),isPrime(2**52-1), //=> 1.3814 ms : ----- performance.now(),isPrime(2**52-47), //=> 118.1830 ms : Prime performance.now(),isPrime(2**53-3155490991),//=> 165.7968 ms : ----- (largest safe prime**2) performance.now(),isPrime(2**53-145), //=> 165.4307 ms : Prime (2nd largest safe prime) performance.now(),isPrime(2**53-111), //=> 166.0785 ms : Prime (largest safe prime) performance.now(),isPrime(2**53-94), //=> 0.0073 ms : ----- (largest safe 2*prime) performance.now(),isPrime(2**53-1), //=> 0.0123 ms : ----- performance.now() ]; //@ts-ignore t has an even number of entries where every even element is type `number` and every odd `boolean` (impossible to type-doc and/or detect by linter) for(let i=0;i+1<t.length;i+=2)console.log((t[i+2]-t[i]).toFixed(4).padStart(9),"ms :",t[i+1]?"Prime":"-----"); ```
lastPrime calculates the next prime number smaller than the given number (in safe integer range: `]-2↑53,2↑53[`) `undefined` for numbers `2` and smaller that have no previous prime number ```typescript function lastPrime(x: number): number|undefined ```
Performance test > node.js `v16.13.1` on intel `i7-10700K` ```javascript const t=[ performance.now(),lastPrime(2), //=> 0.0454 ms : undefined (warmup) performance.now(),lastPrime(2), //=> 0.0019 ms : undefined performance.now(),lastPrime(8), //=> 0.0018 ms : 7 performance.now(),lastPrime(32), //=> 0.0014 ms : 31 performance.now(),lastPrime(64), //=> 0.0010 ms : 61 performance.now(),lastPrime(1024), //=> 0.0012 ms : 1021 performance.now(),lastPrime(2**20), //=> 0.0083 ms : 1048573 performance.now(),lastPrime(2**30), //=> 0.2444 ms : 1073741789 performance.now(),lastPrime(2**40), //=> 7.2193 ms : 1099511627689 performance.now(),lastPrime(2**50), //=> 63.1086 ms : 1125899906842597 performance.now(),lastPrime(2**53-145),//=> 337.8073 ms : 9007199254740761 (2nd largest safe prime) performance.now(),lastPrime(2**53-111),//=> 173.6542 ms : 9007199254740847 (largest safe prime) performance.now(),lastPrime(2**53-1), //=> 195.3127 ms : 9007199254740881 (largest safe integer) performance.now() ]; //@ts-ignore t has an even number of entries where every even element is type `number` and every odd `boolean` (impossible to type-doc and/or detect by linter) for(let i=0;i+1<t.length;i+=2)console.log((t[i+2]-t[i]).toFixed(4).padStart(9),"ms :",String(t[i+1]).padStart(16)); ```
nextPrime calculates the next prime number larger than the given number (in safe integer range: `]-2↑53,2↑53[`) `undefined` when the next prime number is not a safe integer (`>=2↑53`) ```typescript function nextPrime(x: number): number|undefined ``` ```javascript // generate all primes in range [10..100] (via iterator/generator function) console.log(...(function*(s,e){for(let p=nextPrime(s-1)??NaN;p<=e;p=nextPrime(p)??NaN)yield p;})(10,100)); //=> 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 ```
Performance test > node.js `v16.13.1` on intel `i7-10700K` ```javascript const t=[ performance.now(),nextPrime(2), //=> 0.0501 ms : 3 (warmup) performance.now(),nextPrime(2), //=> 0.0019 ms : 3 performance.now(),nextPrime(8), //=> 0.0022 ms : 11 performance.now(),nextPrime(32), //=> 0.0017 ms : 37 performance.now(),nextPrime(64), //=> 0.0012 ms : 67 performance.now(),nextPrime(1024), //=> 0.0018 ms : 1031 performance.now(),nextPrime(2**20), //=> 0.0097 ms : 1048583 performance.now(),nextPrime(2**30), //=> 0.2133 ms : 1073741827 performance.now(),nextPrime(2**40), //=> 4.2761 ms : 1099511627791 performance.now(),nextPrime(2**50), //=> 78.6495 ms : 1125899906842679 performance.now(),nextPrime(2**53-145),//=> 174.2993 ms : 9007199254740881 (2nd largest safe prime) performance.now(),nextPrime(2**53-111),//=> 22.4187 ms : undefined (largest safe prime) performance.now(),nextPrime(2**53-1), //=> 0.0056 ms : undefined (largest safe integer) performance.now() ]; //@ts-ignore t has an even number of entries where every even element is type `number` and every odd `boolean` (impossible to type-doc and/or detect by linter) for(let i=0;i+1<t.length;i+=2)console.log((t[i+2]-t[i]).toFixed(4).padStart(9),"ms :",String(t[i+1]).padStart(16)); ```
factorize calculates the prime decomposition of the given safe integer (`]-2↑53..2↑53[`) prime factors are in ascending order and the list is empty for numbers below `2` (no prime factors) ```typescript function factorize(n: number): number[] ```
Performance test > node.js `v16.13.1` on intel `i7-10700K` ```javascript const t=[ performance.now(),factorize(4), //=> 0.0494 ms : 2 2 (warmup) performance.now(),factorize(4), //=> 0.0022 ms : 2 2 performance.now(),factorize(108), //=> 0.0014 ms : 2 2 3 3 3 performance.now(),factorize(337500), //=> 0.0022 ms : 2 2 3 3 3 5 5 5 5 5 performance.now(),factorize(277945762500), //=> 0.0049 ms : 2 2 3 3 3 5 5 5 5 5 7 7 7 7 7 7 7 //~ https://oeis.org/A076265 ↑ performance.now(),factorize(33332), //=> 0.0079 ms : 2 2 13 641 performance.now(),factorize(33223575732), //=> 0.0279 ms : 2 2 3 599 1531 3019 performance.now(),factorize(277945762499), //=> 3.5837 ms : 41 6779164939 performance.now(),factorize(2**53-3155490991),//=> 175.6862 ms : 94906249 94906249 (largest safe prime**2) performance.now(),factorize(2**53-111), //=> 174.6259 ms : 9007199254740881 (largest safe prime) performance.now(),factorize(2**53-94), //=> 121.8000 ms : 2 4503599627370449 (largest safe 2*prime) performance.now() ]; //@ts-ignore t has an even number of entries where every even element is type `number` and every odd `number[]` (impossible to type-doc and/or detect by linter) for(let i=0;i+1<t.length;i+=2)console.log((t[i+2]-t[i]).toFixed(4).padStart(9),"ms :",...t[i+1]); ```
chanceAmount Calculate the number of consecutive tries needed until an event with a given % change has a 90% (or custom) chance of success overall > Online calculator: <https://maz01001.github.io/Math-Js/functionsjs_chanceAmount> ```typescript // [overload] calculate how many consecutive tries, with % each, are needed to have a % (default 90%) chance of success overall (that it happens once) function chanceAmount(chance: number, tries?: null, goal?: number): number // [overload] calculate how much chance of success (that it happens once) there is overall, for consecutive tries with % each function chanceAmount(chance: number, tries: number, goal?: null): number // [overload] calculate what % chance each try has, when consecutive tries have a % chance of success overall (that it happens once) function chanceAmount(chance: undefined | null, tries: number, goal: number): number ```
Parameter info - `chance` - percentage of the chance for given event succeeding (once) - default none (expected to be given) - `tries` - number of consecutive tries (can be decimal) - default `null` (expected to be the output) - `goal` - percentage of the final/total chance of success for given event (after `tries` number of consecutive tries) - default 90% (`0.90`)
> 100% - (100% - `chance`%)^`tries` = `goal`% Set two variables to calculate the missing third
Examples ```javascript // in explanation: (input) {default} [output] chanceAmount(0.40); //=> 4.507575551943848 | [4.51] consecutive tries with (40%) each to have a {90%} chance of success overall chanceAmount(0.40, null, 0.50); //=> 1.3569154488567239 | [1.36] consecutive tries with (40%) each to have a (50%) chance of success overall chanceAmount(0.40, 2); //=> 0.64 | (2) consecutive tries with (40%) each to have a [64%] chance of success overall chanceAmount(null, 2, 0.50); //=> 0.2928932188134524 | (2) consecutive tries with [29.29%] each to have a (50%) chance of success overall ```
</details> Scroll [UP](#functionsjs "Scroll to start of section: functions.js") | [TOP](#math-in-javascript "Scroll to top of document: Math in JavaScript")